g_REML
objectsimulate.g_REML.Rd
Simulates data from the linear mixed effects model used to estimate the specified standardized mean difference effect size. Suitable for parametric bootstrapping.
# S3 method for g_REML
simulate(object, nsim = 1, seed = NULL, parallel = FALSE, ...)
a g_REML
object
number of models to simulate
seed value. See documentation for simulate
if TRUE
, run in parallel using foreach
backend.
additional optional arguments
A matrix with one row per simulation, with columns corresponding to the output
of g_REML
.
data(Laski)
Laski_RML <- lme(fixed = outcome ~ treatment,
random = ~ 1 | case,
correlation = corAR1(0, ~ time | case),
data = Laski)
suppressWarnings(
Laski_g <- g_REML(Laski_RML, p_const = c(0,1), r_const = c(1,0,1))
)
if (requireNamespace("plyr", quietly = TRUE)) {
simulate(Laski_g, nsim = 5)
}
#> Warning: 'g_REML()' is deprecated and may be removed in a later version of the package. Please use 'g_mlm()' instead.
#> Warning: 'g_REML()' is deprecated and may be removed in a later version of the package. Please use 'g_mlm()' instead.
#> Warning: 'g_REML()' is deprecated and may be removed in a later version of the package. Please use 'g_mlm()' instead.
#> Warning: 'g_REML()' is deprecated and may be removed in a later version of the package. Please use 'g_mlm()' instead.
#> Warning: 'g_REML()' is deprecated and may be removed in a later version of the package. Please use 'g_mlm()' instead.
#> p_beta r_theta delta_AB nu kappa g_AB V_g_AB cnvg_warn
#> 1 32.31720 593.3120 1.326759 13.28751 0.1058721 1.250436 0.08308929 0
#> 2 31.75284 389.1219 1.609680 16.52986 0.1204978 1.535524 0.09812399 0
#> 3 31.73550 669.7560 1.226273 13.14452 0.1156042 1.154948 0.07566976 0
#> 4 28.35262 303.4307 1.627659 36.63297 0.1919549 1.594107 0.07445739 0
#> 5 28.60165 620.6994 1.148023 13.45935 0.1173376 1.082840 0.06708274 0
#> sigma_sq phi Tau.case.var((Intercept))
#> 1 178.1521 0.0929177 415.15986
#> 2 149.7504 0.1003007 239.37157
#> 3 202.5012 0.2120793 467.25479
#> 4 208.2126 0.3824273 95.21807
#> 5 193.6831 0.2107770 427.01626