g_REML.Rd
Estimates a design-comparable standardized mean difference effect size based on data from a multiple baseline design, using adjusted REML method as described in Pustejovsky, Hedges, & Shadish (2014). Note that the data must contain one row per measurement occasion per case.
g_REML(
m_fit,
p_const,
r_const,
X_design = model.matrix(m_fit, data = m_fit$data),
Z_design = model.matrix(m_fit$modelStruct$reStruct, data = m_fit$data),
block = nlme::getGroups(m_fit),
times = attr(m_fit$modelStruct$corStruct, "covariate"),
returnModel = TRUE
)
Fitted model of class lme, with AR(1) correlation structure at level 1.
Vector of constants for calculating numerator of effect size.
Must be the same length as fixed effects in m_fit
.
Vector of constants for calculating denominator of effect size.
Must be the same length as the number of variance component parameters in m_fit
.
(Optional) Design matrix for fixed effects. Will be extracted from m_fit
if not specified.
(Optional) Design matrix for random effects. Will be extracted from m_fit
if not specified.
(Optional) Factor variable describing the blocking structure. Will be extracted from m_fit
if not specified.
(Optional) list of times used to describe AR(1) structure. Will be extracted from m_fit
if not specified.
(Optional) If true, the fitted input model is included in the return.
A list with the following components
p_beta | Numerator of effect size |
r_theta | Squared denominator of effect size |
delta_AB | Unadjusted (REML) effect size estimate |
nu | Estimated denominator degrees of freedom |
kappa | Scaled standard error of numerator |
g_AB | Corrected effect size estimate |
V_g_AB | Approximate variance estimate |
cnvg_warn | Indicator that model did not converge |
sigma_sq | Estimated level-1 variance |
phi | Estimated autocorrelation |
Tau | Vector of level-2 variance components |
I_E_inv | Expected information matrix |
Pustejovsky, J. E., Hedges, L. V., & Shadish, W. R. (2014). Design-comparable effect sizes in multiple baseline designs: A general modeling framework. Journal of Educational and Behavioral Statistics, 39(4), 211-227. doi:10.3102/1076998614547577
data(Laski)
Laski_RML <- lme(fixed = outcome ~ treatment,
random = ~ 1 | case,
correlation = corAR1(0, ~ time | case),
data = Laski)
summary(Laski_RML)
#> Linear mixed-effects model fit by REML
#> Data: Laski
#> AIC BIC logLik
#> 1048.285 1062.466 -519.1424
#>
#> Random effects:
#> Formula: ~1 | case
#> (Intercept) Residual
#> StdDev: 15.68278 13.8842
#>
#> Correlation Structure: AR(1)
#> Formula: ~time | case
#> Parameter estimate(s):
#> Phi
#> 0.252769
#> Fixed effects: outcome ~ treatment
#> Value Std.Error DF t-value p-value
#> (Intercept) 39.07612 5.989138 119 6.524498 0
#> treatmenttreatment 30.68366 2.995972 119 10.241637 0
#> Correlation:
#> (Intr)
#> treatmenttreatment -0.272
#>
#> Standardized Within-Group Residuals:
#> Min Q1 Med Q3 Max
#> -2.72642154 -0.69387388 0.01454473 0.69861200 2.14528141
#>
#> Number of Observations: 128
#> Number of Groups: 8
g_REML(Laski_RML, p_const = c(0,1), r_const = c(1,0,1), returnModel=FALSE)
#> Warning: 'g_REML()' is deprecated and may be removed in a later version of the package. Please use 'g_mlm()' instead.
#> est se
#> unadjusted effect size 1.465 0.299
#> adjusted effect size 1.405 0.286
#> degree of freedom 18.552
data(Schutte)
Schutte$trt.week <- with(Schutte, unlist(tapply((treatment=="treatment") * week,
list(treatment,case), function(x) x - min(x))) + (treatment=="treatment"))
Schutte$week <- Schutte$week - 9
Schutte_RML <- lme(fixed = fatigue ~ week + treatment + trt.week,
random = ~ week | case,
correlation = corAR1(0, ~ week | case),
data = subset(Schutte, case != 4))
summary(Schutte_RML)
#> Linear mixed-effects model fit by REML
#> Data: subset(Schutte, case != 4)
#> AIC BIC logLik
#> 875.9526 901.8978 -428.9763
#>
#> Random effects:
#> Formula: ~week | case
#> Structure: General positive-definite, Log-Cholesky parametrization
#> StdDev Corr
#> (Intercept) 9.783287 (Intr)
#> week 1.412030 0.811
#> Residual 5.421656
#>
#> Correlation Structure: AR(1)
#> Formula: ~week | case
#> Parameter estimate(s):
#> Phi
#> 0.3985953
#> Fixed effects: fatigue ~ week + treatment + trt.week
#> Value Std.Error DF t-value p-value
#> (Intercept) 50.29150 4.073625 121 12.345637 0.0000
#> week 0.20271 0.616194 121 0.328968 0.7427
#> treatmenttreatment -0.54218 1.751668 121 -0.309520 0.7575
#> trt.week -1.63198 0.655256 121 -2.490607 0.0141
#> Correlation:
#> (Intr) week trtmnt
#> week 0.883
#> treatmenttreatment -0.258 -0.200
#> trt.week -0.567 -0.596 -0.178
#>
#> Standardized Within-Group Residuals:
#> Min Q1 Med Q3 Max
#> -2.33194245 -0.46272153 -0.05348694 0.32878028 4.08749914
#>
#> Number of Observations: 136
#> Number of Groups: 12
Schutte_g <- g_REML(Schutte_RML, p_const = c(0,0,1,7), r_const = c(1,0,1,0,0))
#> Warning: 'g_REML()' is deprecated and may be removed in a later version of the package. Please use 'g_mlm()' instead.
summary(Schutte_g)
#> est se
#> sigma_sq 29.394 6.670
#> phi 0.399 0.132
#> case.var((Intercept)) 95.713 46.939
#> case.cov(week,(Intercept)) 11.209 6.372
#> case.var(week) 1.994 1.076
#> total variance 125.107 46.784
#> (Intercept) 50.291 4.074
#> week 0.203 0.616
#> treatmenttreatment -0.542 1.752
#> trt.week -1.632 0.655
#> treatment effect at a specified time -11.966 4.609
#> unadjusted effect size -1.070 0.495
#> adjusted effect size -1.013 0.469
#> degree of freedom 14.302
#> kappa 0.412
#> logLik -428.976