CI_g.Rd
Calculates a confidence interval given a g_REML
, a
g_HPS
, or a g_mlm
object using either a central t
distribution (for a symmetric interval) or a non-central t distribution
(for an asymmetric interval).
an estimated effect size object of class g_REML
, class
g_HPS
, or class g_mlm
.
confidence level
numerical tolerance for non-centrality parameter in
qt
.
If TRUE
(the default), use a symmetric confidence
interval. If FALSE
, use a non-central t approximation to obtain an
asymmetric confidence interval.
A vector of upper and lower confidence bounds.
data(Laski)
Laski_RML <- lme(fixed = outcome ~ treatment,
random = ~ 1 | case,
correlation = corAR1(0, ~ time | case),
data = Laski)
Laski_g_REML <- suppressWarnings(
g_REML(Laski_RML, p_const = c(0,1),
r_const = c(1,0,1), returnModel = FALSE)
)
CI_g(Laski_g_REML, symmetric = TRUE)
#> [1] 0.8046224 2.0051521
CI_g(Laski_g_REML, symmetric = FALSE)
#> [1] 0.9143684 2.0046719
Laski_HPS <- with(Laski, effect_size_MB(outcome, treatment, case, time))
CI_g(Laski_HPS, symmetric = FALSE)
#> [1] 0.8786207 2.0639828
Laski_g_mlm <- g_mlm(mod = Laski_RML, p_const = c(0,1), r_const = c(1,0,1))
CI_g(Laski_g_mlm, symmetric = FALSE)
#> [1] 0.9143684 2.0046719