varcomp_vcov.Rd
Estimate the sampling variance-covariance of variance component parameters from a fitted linear mixed effects model (lmeStruct object) or generalized least squares model (glsStruct object) using the inverse Fisher information.
varcomp_vcov(mod, type = "expected", separate_variances = FALSE)
Fitted model of class lmeStruct or glsStruct.
Type of information matrix. One of "expected"
(the
default), "observed"
, or "average"
.
Logical indicating whether to return the Fisher
information matrix for separate level-1 variance components if using
varIdent
function to allow for different variances per stratum.
Default is FALSE
.
Sampling variance-covariance matrix corresponding to variance
component parameters of mod
.
library(nlme)
data(Bryant2016)
Bryant2016_RML <- lme(fixed = outcome ~ treatment,
random = ~ 1 | school/case,
correlation = corAR1(0, ~ session | school/case),
data = Bryant2016)
varcomp_vcov(Bryant2016_RML, type = "expected")
#> Tau.school.var((Intercept))
#> Tau.school.var((Intercept)) 8.133897e+04
#> Tau.case.var((Intercept)) -2.140288e+04
#> cor_params -1.004342e-02
#> sigma_sq -4.701742e+02
#> Tau.case.var((Intercept)) cor_params
#> Tau.school.var((Intercept)) -2.140288e+04 -0.0100434221
#> Tau.case.var((Intercept)) 3.996247e+05 -8.2280389067
#> cor_params -8.228039e+00 0.0002154736
#> sigma_sq -3.815475e+05 9.8729705296
#> sigma_sq
#> Tau.school.var((Intercept)) -4.701742e+02
#> Tau.case.var((Intercept)) -3.815475e+05
#> cor_params 9.872971e+00
#> sigma_sq 4.602103e+05
Bryant2016_RML2 <- lme(fixed = outcome ~ treatment,
random = ~ 1 | school/case,
correlation = corAR1(0, ~ session | school/case),
weights = varIdent(form = ~ 1 | treatment),
data = Bryant2016)
varcomp_vcov(Bryant2016_RML2, separate_variances = TRUE)
#> Tau.school.var((Intercept))
#> Tau.school.var((Intercept)) 7.650378e+04
#> Tau.case.var((Intercept)) -1.002118e+04
#> cor_params 4.502481e-02
#> sigma_sq.baseline 1.053266e+03
#> sigma_sq.treatment 1.828454e+03
#> Tau.case.var((Intercept)) cor_params
#> Tau.school.var((Intercept)) -10021.184349 0.0450248142
#> Tau.case.var((Intercept)) 75198.149282 -1.9990654654
#> cor_params -1.999065 0.0001064976
#> sigma_sq.baseline -61234.457795 2.9076385241
#> sigma_sq.treatment -76051.465666 4.0240881679
#> sigma_sq.baseline sigma_sq.treatment
#> Tau.school.var((Intercept)) 1053.265669 1828.454299
#> Tau.case.var((Intercept)) -61234.457795 -76051.465666
#> cor_params 2.907639 4.024088
#> sigma_sq.baseline 88587.503569 111841.989389
#> sigma_sq.treatment 111841.989389 160901.347442