calc_ES.Rd
Calculates one or more effect size estimates, along with associated standard errors and confidence intervals, if available, for a single-case data series.
calc_ES(
A_data,
B_data,
condition,
outcome,
baseline_phase = NULL,
intervention_phase = NULL,
ES = c("LRRd", "LRRi", "SMD", "Tau"),
improvement = "increase",
...,
confidence = 0.95,
format = "long"
)
vector of numeric data for A phase. Missing values are dropped.
vector of numeric data for B phase. Missing values are dropped.
vector identifying the treatment condition for each observation in the series.
vector of outcome data for the entire series.
character string specifying which value of
condition
corresponds to the baseline phase. Defaults to first
observed value of condition
.
character string specifying which value of
condition
corresponds to the intervention phase. Defaults to second
unique value of condition
.
character string or character vector specifying which effect size
index or indices to calculate. Available effect sizes are "LRRd"
,
"LRRi"
, "LRM"
, "LOR"
, "SMD"
, "NAP"
,
"IRD"
, "PND"
, "PEM"
, "PAND"
, "PoGO"
,
"Tau"
, "Tau-U"
, and "Tau-BC"
. Set to "all"
for
all available effect sizes. Set to "parametric"
for all parametric
effect sizes. Set to "NOM"
for all non-overlap measures. Defaults to
calculating the LRRd, LRRi, SMD, and Tau indices.
character string indicating direction of improvement. Default is "increase".
further arguments used for calculating some of the effect size indices.
confidence level for the reported interval estimate. Set to
NULL
to omit confidence interval calculations.
character string specifying whether to organize the results in
"long"
format or "wide"
format. Defaults to "long"
.
A data.frame containing the estimate, standard error, and/or confidence interval for each specified effect size.
Calculates one or more effect size indices
# Using the A_data and B_data arguments
A <- c(20, 20, 26, 25, 22, 23)
B <- c(28, 25, 24, 27, 30, 30, 29)
calc_ES(A_data = A, B_data = B)
#> ES Est SE CI_lower CI_upper baseline_SD
#> 1 LRRd -0.1953962 0.05557723 -0.30432554 -0.08646679 NA
#> 2 LRRi 0.1953962 0.05557723 0.08646679 0.30432554 NA
#> 3 SMD 1.6499319 0.63409351 0.40713144 2.89273232 2.503331
#> 4 Tau 0.8333333 0.13801311 0.19468122 0.97203517 NA
# Using the condition and outcome arguments
phase <- c(rep("A", length(A)), rep("B", length(B)))
outcome <- c(A, B)
calc_ES(condition = phase, outcome = outcome, baseline_phase = "A")
#> ES Est SE CI_lower CI_upper baseline_SD
#> 1 LRRd -0.1953962 0.05557723 -0.30432554 -0.08646679 NA
#> 2 LRRi 0.1953962 0.05557723 0.08646679 0.30432554 NA
#> 3 SMD 1.6499319 0.63409351 0.40713144 2.89273232 2.503331
#> 4 Tau 0.8333333 0.13801311 0.19468122 0.97203517 NA
# Example from Parker & Vannest (2009)
yA <- c(4, 3, 4, 3, 4, 7, 5, 2, 3, 2)
yB <- c(5, 9, 7, 9, 7, 5, 9, 11, 11, 10, 9)
calc_ES(yA, yB)
#> ES Est SE CI_lower CI_upper baseline_SD
#> 1 LRRd -0.8102983 0.14867023 -1.1016866 -0.5189100 NA
#> 2 LRRi 0.8102983 0.14867023 0.5189100 1.1016866 NA
#> 3 SMD 2.8531844 0.78308117 1.3183735 4.3879953 1.494434
#> 4 Tau 0.9272727 0.06385245 0.4999482 0.9901458 NA